The following references provide an introduction to the topics of the school. Where possible, links to open versions of the documents are provided.

O. Bohigas, M. Manubens, and L. Ros: Singularities of Non-redundant manipulators: A Short Account and a Method for their Computation in the Planar Case, Mechanism and Machine Theory Vol. 68, pp. 1-17, 2013.

O. Bohigas, D. Zlatanov, L. Ros, M. Manubens, J. M. Porta: A General Method for the Numerical Computation of Manipulator Singularity Sets. IEEE Transactions on Robotics. Vol. 30, No. 2, pp. 340-351, 2014.

O. Bohigas, M. Manubens, L. Ros: Singularities of Robot Mechanisms: Numerical Computation and Avoidance Path Planning, Springer 2017.

M. Coste, D. Chablat, P. Wenger: Nonsingular change of assembly mode without any cusp. 14th International Symposium on Advances in Robot Kinematics, pp. 105-112, 2014.

M. L. Husty, M. Pfurner, H.-P. Schröcker, and K. Brunnthaler: Algebraic methods in mechanism analysis and synthesis. ROBOTICA, Vol. 25, No. 6, pp. 661 - 675, 2007.

M. L. Husty and H.-P. Schröcker: Kinematics and Algebraic geometry, in 21st Century Kinematics, M. McCarthy (ed.), Springer, 2012.

J.P. Merlet: Singular configurations of Parallel Robots and Grassmann Geometry, The International Journal of Robotics Research, Vol. 8, No. 5, pp. 45–56, 1989.

J. P. Merlet: Parallel Robots, Springer, 2nd ed., 2005.

A. Müller, S. Piipponen: On Regular Kinematotropies, 14th World Congress in Mechanism and Machine Science, 2015.

A. Müller: Representation of the kinematic topology of mechanisms for kinematic analysis, Mechanical Sciences, Vol. 6, pp. 137-146, 2015.

A. Müller: Recursive higher-order constraints for linkages with lower kinematic pairs, Mechanism and Machine Theory, Vol. 100, pp. 33-43, 2016.

A. Müller: Higher-order constraints for higher kinematic pairs and their application to mobility and shakiness analysis of mechanisms, Meccanica, Vol. 52, No. 7, pp. 1669-1684, 2017.

A. Müller: Higher-Order Analysis of Kinematic Singularities of Lower Pair Linkages and Serial Manipulators, ASME Journal of Mechanisms and Robotics, Vol. 10, No 1, 011008, 2018.

J. M. Porta, L. Ros, O. Bohigas, M. Manubens, C. Rosales, L. Jaillet The CUIK Suite: Motion Analysis of Closed-chain Multibody Systems. IEEE Robotics and Automation Magazine. Vol. 21, No. 3, pp. 105-114, 2014.

J. Selig: Geometric Fundamentals of Robotics, Springer, 2005.

F. Thomas and P. Wenger: On the Topological Characterization of Robot Singularity Loci. A Catastrophe-Theoretic Approach. Proceedings of the IEEE International Conference on Robotics and Automation, 2011.

F. Thomas: A Distance Geometry Approach to the Singularity Analysis of 3R Robots. ASME Journal of Mechanisms and Robotics, Vol. 8, No. 1, 011001, 2015.

F. Thomas and A. Pérez-Gracia, Some New Results in the Kinematics of 3R Robots Using Nested Determinants. ASME 2017 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, 2017.

P. Wenger: Uniqueness domains and regions of feasible continuous paths for cuspidal manipulators. IEEE Transactions on Robotics, Vol 20, No. 4, pp. 745-750, 2004.

P. Wenger: Cuspidal Robots. Hal, archive ouverte hal-01377763v3, 2016.

M. Zein, P. Wenger, D. Chablat Non-Singular Assembly-mode Changing Motions for 3-RPR Parallel Manipulators. Mechanism and Machine Theory, Vol. 43, No. 4, pp. 391-524, 2008.

D. Zlatanov: Generalized Singularity Analysis of Mechanisms. Ph.D. Thesis. University of Toronto, 1998.

D. Zlatanov, I.A. Bonev, and C.M. Gosselin: Constraint singularities of parallel mechanisms, IEEE International Conference on Robotics and Automation, pp. 496–502, 2002.